검색어 입력폼
평가점수B

[논리회로]디지털회로 설계의 기초 1장 연습문제

저작시기 2006.04 |등록일 2006.05.20 워드파일MS 워드 (doc) | 9페이지 | 가격 500원

소개글

`디지털회로 설계의 기초`
출판사 YOUNG 2006년도판

연습문제 풀이입니다.

본문내용

1.1 BCD 코드를 이용하여 한 자리의 자연수 두 개를 덧셈할 경우, 결과를 0~18 사이의 값이 된다. 다음 두 가지 예에서 보는 바와 같이 두 BCD 코드를 일반 이진 코드처럼 덧셈하면 그 결과가 BCD 코드가 될 수도 있고 아닐 수도 있다. BCD가 아닌 코드가 발생하면 이를 감지하여 정상적인 BCD 코드로 변환할 수 있는 방안에 대하여 설명하시오. (힌트: BCD에서는 덧셈 결과가 9를 넘으면 올림수 (carry)가 발생하여 한 자리의 BCD로는 표현할 수 없게 된다. 이 때의 이진수 표현과 그에 상응하는 BCD 표현 사이의 관계로부터 규칙을 찾아 방안을 답하시오. 먼저 덧셈 결과가 9를 넘는지를 확인하는 Excess-9 Detector를 고안하고, non-BCD 코드를 BCD 코드로 변환하는 방안을 찾으시오.)

1.1 다음 그림 P1.1과 같이 네 비트가 주어져 있는데, 최상위 비트와 다음 비트 사이에 소수점이 있다고 가정하자. 이 때 1의 보수 표현법 및 부호와 크기 표현법으로 표현 가능한 수의 범위를 각각 구하시오.
=> 1의 보수 표현법 및 부화와 크기 표현법으로 표현 가능한 수의 범위는 –(2n-1-1) ~ +(2n-1-1)으로 동일하다.

=> 소수점 이하 3비트로 표현 가능한 수는 0.875가 최대 값이므로, 표현 가능한 수의 범위는 -0.875 ~ +0.875가 된다.


1.1 10비트로 구성된 고정 소수점 표현 방식의 수가 있다. 부호를 포함한 정수비트가 3비트, 소수비트가 7비트인 경우 표현 가능한 수의 범위와 구분 가능한 최소값을 구하시오.

=> 정수비트의 범위는 –(2n-1-1) ~ +(2n-1-1)으로 -3 ~ 3 이다.
=> 소수 비트는 7-bit 이므로 0.984425로 표현 가능하다.
=> 즉, 3비트 정수비트와 7비트 소수비트로 표현 가능한 수의 범위는 -3.984425 ~ +3.984425 이다.
다운로드 맨위로